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Abstract

In real-world applications, evidence detection involves eval-
uating a body of existing information from time-evolving
multi-modal data sources. It seems obvious that approaches
to evidence detection should consider the relative quality of
data sources with respect to the value of information being
produced over time. For instance, considering all data sources
equally reliable can yield undesirable results. We highlight
the distinction between the traditional value of information
problem where information is pulled from sources and the
value of information for evidence detection problem where
information is pushed from the sources. We further comment
on how this distinction enables new qualities of information
to be measured and characterized. In this paper, we ad-
dress the following questions: What should value of informa-
tion mean for evidence detection? What are the components
needed to characterize value of information? How should
these components be measured and combined to compute a
value for information? Finally, how should value of informa-
tion be used in evidence detection? We develop a framework
for implementing value of information for evidence detection
and present the results of a preliminary feasibility study.

Introduction and Background
The sheer size and complexity of data sets in real-world ap-
plications have prompted many efforts on management and
analysis of large complex networks. These networks store
multi-source data with multi-modal and multi-relational
properties in a human-understandable way. One of the asso-
ciated challenges is to find evidence in support of or against
a particular hypothesis. It is common to try to detect pat-
terns in the data and use these patterns to perform inference
or update beliefs in a set of hypotheses.

The published literature is full of algorithms for pattern
matching, pattern mining, link analysis, and many others
on such networks (Gallagher 2006; Getoor & Diehl 2005;
Washio & Motoda 2003). A logical next step is to take these
algorithms further and use their patterns/results as evidence.
In this paper, we argue that any approach to evidence detec-
tion should consider the value of information (VOI) for the
output of the data sources. Without such measurement, all
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sources and their data are considered “equal.” This assump-
tion is clearly false. For instance, using patterns that were
generated from an unreliable data source is clearly not de-
sirable. Our proposed VOI framework enables evaluation of
detected patterns based on their qualities.

Throughout the remainder of this paper, we highlight re-
lated work from a number of fields. We provide an idealized
definition of VOI as well as a technique for estimating it.
We conclude by presenting some of the results obtained in
our preliminary feasibility study and discussing the future
directions for continuing this research.

The problem of determining VOI is well-studied in vari-
ous fields dating back to the 1940s. All existing approaches
solve a variant of the following problem. Given a set of
sources, which is the best (or best set) to obtain an obser-
vation (or a set of observations) from? In other words, an
agent must determine the optimal “activation schedule” for
the sources of information to maximize (or minimize) some
objective. There are a number of approaches to solving this
problem, based mostly on decision theory and/or informa-
tion theory. However, measuring VOI for evidence detection
differs from previous work in several ways.

First, prior work typically makes inherent assumptions
about reliability of information (Horvitz & Rutledge 1991;
McCarthy 1956; Shannon 1948). In particular, the tradi-
tional approaches of information and decision theory assume
sources to be fully reliable. Data for evidence detection is
often not fully reliable or even relevant. It originates from
multi-modal sources – each with varying characteristics that
can change as the world evolves.

Second, previous work typically characterizes the value of
querying an information source which is a pull problem (as
data is pulled from sources) (Heckerman, Horvitz, & Mid-
dleton 1993; Zhang, Ji, & Looney 2002). For the purpose of
evidence detection, we are interested in understanding how
to interpret data that we have already obtained or has been
pushed to us. To understand this distinction, consider the
following situation. You are buying a new car from a com-
pany that is known to produce a high quality product. Un-
fortunately, the company has redesigned the car for this year
and you do not know if it is up to the usual standards. There
are two ways you can proceed. One is to proceed under the
assumption that the company’s reputation is sufficient and
they will likely not produce a bad car. Alternatively, you
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can test drive the car and determine if the product is con-
sistent with what you know about the company. The first
case, when you make the decision solely based on reputa-
tion, is an example of a pull problem. The second case, when
you decide after test driving the vehicle, is an example of a
push problem. The key distinction is whether the value of
what the source (or company) produces is determined prior
to (pull) or after (push) inspection of the product (or infor-
mation). Our position is that in detecting evidence within a
body of existing information, push methods are what need to
be utilized. To use the methods developed for the pull prob-
lem, where inspection of the current information does not
occur when evaluating quality or value, imposes an artificial
handicap on the detection of evidence. The pull approach
is warranted when there is a cost for obtaining information
as is typically assumed in decision theory. Since evidence
is available without cost, we can exploit the opportunity to
inspect the current information and develop a measure for
VOI more attune to shifts in information quality.

Third, we found little work that attempted to learn VOI
and/or its components across multiple sources over time.
Generally speaking, the majority of work in this area comes
from the Information Fusion community (Rogova & Nimier
2004). The goal in information fusion is to combine multi-
ple sources of information into one coherent representation.
Often, the pre-fusion information is missing values, pertains
to disjoint concepts, or may be unreliable. All of these as
well as other properties of the pre-fusion information must
be taken into account when designing a fusion operator.

Moreover existing approaches in the fusion community,
such as Delmotte, Dubois, and Borne’s (1996), generally do
not involve learning to characterize the quality of data. In
this work, it is noted that the quality of knowledge produced
by fusion is influenced by adequacy of the data, quality of
the uncertainty model, and quality of the prior knowledge.
Much of this work has focused on the improvement of an
uncertainty model and has completely ignored the reliabil-
ity of information. When it is considered, two measures
of reliability are discussed: 1) The relative stability of the
first order uncertainty; 2) The accuracy of the beliefs. It
is assumed that the fusion operator will not introduce any
residual uncertainty that is not due to the data itself. A fair
amount of research has been devoted to the incorporation of
reliability into fusion rules. In this research, the reliability
measure comes in one of three forms: 1) It is encoded by
external sources (e.g. context or an expert); 2) It is learned
using training data; 3) It is constructed based on agreement
of sources or consensus (Delmotte, Dubois, & Borne 1996;
Parra-Loera, Thompson, & Salvi 1991). It is not, however,
estimated prior to fusion. Historically, consensus models of
reliability have taken one of the following two forms: 1) A
degree of deviation between measurements of each source
and the fusion result (e.g. posterior belief); 2) A measure of
“inner trust” based on a pairwise degree of “likeliness” of
agreement (or consensus) between sources. While this work
is interesting and in some cases can improve inference per-
formance, there is a notable problem with consensus mea-
sures of reliability. Specifically, lack of consensus is suffi-
cient for low reliability but not necessary. Further, for VOI to

Figure 1: VOI Framework for Evidence Detection

be useful for evidence detection, it must be computed prior
to fusion–and not as a function of its output.

Measuring VOI for evidence enables a solution to the
problem of detecting information (i.e. evidence) with the
highest qualitative value to either confirm a true hypothesis
or disconfirm a false hypothesis.1 VOI for evidence detec-
tion should: 1) capture information from possibly unreliable
sources; 2) characterize the value of a body of existing in-
formation (a push problem); and 3) be tailored to improve
inference and allow data triage.2

Figure 1 depicts our framework for VOI in evidence de-
tection. At the top of the Figure there are a set of sources that
are pushing reports (or information). The different icons in
the sources are intended to represent the multi-modal data.
The reports they generate evolve over time as the environ-
ment evolves. In the center of the Figure, there is an f inside
a circle. To the left is a representation of a set of beliefs
(i.e. prior knowledge or knowledge obtained earlier) that are
evolving over time and to the right are the set of hypothe-
ses that are (possibly) evolving over time. The f represents
the combination of information, beliefs, and hypothesis into
a quality metric. Note that this is not the same as fusion.
In the fusion framework, the information from the sources
would be combined to produce “manipulated” data (we re-
turn to this concept later). In our VOI framework, the infor-
mation from the sources is combined to produce a measure
of quality. This measure of quality can be used to detect evi-
dence, inform inference, or even inform fusion. This quality
(or VOI) measure is represented by the thumbs-up-thumbs-
down icon at the bottom of the Figure and generally lies
somewhere in between the extremes of useless and useful
(i.e. it is not a binary measure of goodness).

We seek a learning algorithm (such as regression) to esti-
1For a discussion on the degree to which a hypothesis is con-

firmed or disconfirmed, see (Fitelson 2001b).
2Note that even with anonymized data, one needs to evaluate

the source.
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mate VOI based on data characteristics that can be used to
inform inference. For example, if we are using probability
as our model of uncertainty, the estimate of VOI can be in-
terpreted as a likelihood factor that is used for belief update.

To recap, by removing the data-equality assumption, in-
formation can be judged based on its quality. This should
improve our ability to detect evidence, test hypotheses, and
perform data triage (Kent 1994; Schrage 2005). In the next
section, we address the following questions: What should
value of information mean for evidence detection? What
are the basic parameters needed to characterize value of in-
formation? How should these parameters be measured and
combined to compute a value for information? Finally, how
should value of information be used in evidence detection?

VOI for Evidence Detection
Definition of VOI
To measure value of information, we first need to define
what constitutes information. A piece of information is the
smallest amount of data needed to update the probability
distribution of a hypothesis within a database of hypothe-
ses. Naturally, information is conditional on a chosen do-
main topic (e.g. Avian influenza) or a selected taxonomy
(e.g. viral infections). This conditionality manifests itself in
hypotheses and beliefs.

To reiterate, for evidence detection VOI should: 1) pro-
vide an accurate quality assessment; 2) improve perfor-
mance of inference procedures; and 3) enable the triage of
large amounts of information. The existing definitions of
VOI from information theory and decision theory do not
satisfy these requirements. In information theory, VOI is a
measure of uncertainty reduction (entropy). In decision the-
ory, VOI is a measure of influence over a decision or choice
of actions (value for taking an action). In either case, how-
ever, the measures are traditionally defined to characterize
the expected value of querying an information source and
not to provide an interpretation of the information the source
has already produced.

In contrast, for evidence detection, we define VOI to be
a measure of the potential increase/decrease in believing a
true/false hypothesis. Specifically, VOI for evidence detec-
tion is a measure of the ability for a body of information to
increase belief in a true hypothesis (or set of hypotheses) or,
conversely, decrease belief in a false hypothesis (or set of
hypotheses). In the absence of an oracle that can inform us
of the truth of hypotheses, we need algorithms to approx-
imate VOI over time. Note that information in support of
facts will have no value (since facts are hypotheses whose
truth/falsehood is known with absolute certainty).

Two Notions of Temporal Tracking
There are two ways time is considered when it comes to VOI
for evidence detection. The first notion of time computes
VOI depending on when evidence is received—penalizing
information that is saturated and/or arrives too late. For
example, today’s news report about a potential attack that
happened yesterday is useless. This scenario is sometimes
called the “overcome by events” phenomenon. Ideally, a

“timely” piece of information dramatically reduces the gap
between beliefs and ground truth.

The second (and arguably more important) way in which
time is considered when it comes to VOI for evidence detec-
tion is one way in which our approach is set apart from exist-
ing work in VOI. Specifically, we use time to distinguish be-
tween a process across a range of multiple time steps and an
event at a single point in time. When dealing with evidence,
we have the ability to both consider the total (or partial) his-
tory of information produced by a source as well as the infor-
mation it has produced most recently. This allows us to char-
acterize the expected value of a source of information over
time in a way similar to the information and decision theo-
retic measures where the value is based on the distribution of
information to be produced by the source. Additionally, we
can also characterize the quality of the information that has
been produced by the source at the current time step with-
out the need for an expert to encode contextual knowledge
about the reliability and/or validity of the source. For exam-
ple, even completely reliable news sources have to print a
retraction on rare occasions. If we look beyond simply char-
acterizing the reliability of the source and make use of our
existing beliefs, then we may be able to tell ahead of time
that information from a reliable source is potentially faulty
and may later be retracted. Using our VOI for an event, the
information that will eventually be retracted can hopefully
be identified early, before it may be a detriment to infer-
ence. On the other hand, information and decision theoretic
measures do not characterize the quality of the report, only
the source, thus preventing the detection of mal-information
prior to inference.

Components for Estimating VOI
We have identified three separate influences that we feel are
responsible for how information is interpreted and that we
will use as component measures to estimate VOI. They are
reliability R, independence I , and coherence C.3 Each of
these can be measured in a variety of ways.

We first define some notation: S = {S1, . . . , Sn} is
a set of information sources. T = {tx, . . . , ty} is a
time interval and ti represents a particular point in time.
H = {H1, . . . ,Hn} represents a set of hypotheses. B =
{B1, . . . , Bn} is a set of beliefs. Lastly, E represents ev-
idence or the information produced by a source or set of
sources at the given time step or time interval. This can be a
single value (in the case of one source at one point in time)
or as complex as a set of sets (in the case of a set of sources
over a time interval) or anywhere in between. Figure 2 de-
picts the taxonomy to which our basic components for es-
timating VOI belong. As mentioned above, each of these
components can be measured in a variety of ways. The cat-
egories are based on how memory/time (process vs. event)
and beliefs/context (objective vs. subjective) are considered
during the computation of the component measures. These

3Some might argue that there should be a fourth component
measure—relevance. For example, measuring height is not rele-
vant for inferring intelligence but measuring IQ is. For our pur-
poses, we assume all information is at least relevant.
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Figure 2: A Taxonomy of Basic Components for VOI

component measures are described in slightly more detail
below. In some cases, we provide an illustrative example of
how the measure may be computed.

We add a few comments on objective and subjective mea-
sures. The process of calculating a component measure of
VOI (or VOI itself) conditioned on a belief set is known as
a subjective measure. If the computation is performed with-
out a belief set, it is known as an objective measure. This is
reflected in Figure 2 where B appears in the subjective mea-
sures but not in the objective measures of the taxonomy. In
either case, all computations are made with respect to a set
of hypotheses (see Figure 2). This conditioning on hypothe-
ses is to provide an appropriate frame of reference (e.g. the
value of knowing that a car is blue is zero with respect to the
hypothesis that the car is of high quality).
Reliability Reliability is intended to capture how fre-
quently a source of information agrees with ground truth.
In the context of news sources, reliability is interpreted as a
measure of how frequently a particular news source reports
information that turns out to be true. To assess the reliability
of a source, we can consider statistical models that use the
rate at which the source produces true positive or false pos-
itive information. Alternatively, in the absence of true/false
positive rates, one approach is to estimate reliability using a
function such as the following (Cronbach 1947):

R(Si|H,B, T ) =
σ2(B|H)

σ2(Si|H)

where σ2 denotes variance. This is a measure of subjective
process reliability.
Coherence Coherence captures agreement among
sources. The interpretation of coherence among news
sources is a measure of how frequently they agree. For
example, take two conservative talk show hosts: Pat
Robertson and Rush Limbaugh. As they are motivated
by current events and politics, they frequently discuss
many of the same topics on their shows. They are clearly
independent as they are both free thinkers. However, they
agree on many things, which makes them coherent sources
of information. An example of an objective event coherence
measure is (Olson 2002):

C(Si, Sj |H, tk) =
P (Si ∩ Sj |H, tk)

P (Si ∪ Sj |H, tk)

Independence Independence captures the causal depen-
dence between sources (rather than simple agreement). It
has a very intuitive interpretation. For example, articles from
the New York Times and Al Jazeera that both report the same

Figure 3: Flow Chart for Combining Components of VOI in
the Context of Probability Theory

thing are likely to be independent but two articles from the
Associated Press on the same topic are likely not indepen-
dent. In the context of the probability model of uncertainty,
given a belief set, independence is a conditional measure
that captures the degree of autonomy between sources. The
standard way to measure independence is to use rules from
probability such as the following subjective event indepen-
dence measure:

I(Si, Sj |H,B, tk) =
P (Si, Sj |H,B, tk)

P (Si|H,B, tk) × P (Sj |H,B, tk)

=
P (Si|Sj ,H,B, tk)

P (Si|H,B, tk)

Learning VOI and its Uses

Our approach to VOI is to combine the aforementioned com-
ponents using some (possibly learned) function. Figure 3
is a flow chart showing an abstract representation of how
we may use these combined components in a probabilis-
tic setting. At the top, prior beliefs, hypotheses, and a set
of sources are represented. Each of these are used as in-
put into individual reliability, coherence, and independence
functions as described in the taxonomy in Figure 2. These
components are combined to form an estimated VOI that is
used to inform an inference or learning procedure such as
density estimation. More specifically, VOI can be used to
select the strongest evidence (or subset of information pro-
duced by the sources) at each time step to use as input to the
learning or inference procedure. The output of the learning
or inference procedure provides a likelihood factor that is
used to update prior beliefs. The resulting posterior beliefs
for the time step depicted in the figure then form the prior
beliefs for the next time step (as depicted by the dashed line
from the bottom of the figure to the top).

To learn VOI, we can use all available sources (passive se-
lection) or select a subset of sources (active selection) (Liao
& Ji 2006; Zhang & Ji 2006). For active fusion, we can use
VOI estimates based on the previous time step (or steps) to
help us select the most appropriate sources.
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Lastly, we can also learn separate functions for reliability,
coherence, and independence through various supervised
learning approaches. This would be in contrast to using a
predefined function for R, C, and I such as one of the ex-
amples given above.

To the best of our knowledge, no one has tried to de-
velop a formal model that computes/learns VOI using a
single function that captures reliability, coherence, and in-
dependence over time given a hypothesis and a belief set.
The most relevant work has been in philosophy of sci-
ence (Bovens & Hartmann 2001; 2003; Fitelson 2001a;
2001b). Bovens and Hartmann (2001) consider reliabil-
ity and contextual fit4 within the framework of a Bayesian
network but sidestep the problem of independence between
sources. In addition, Bovens and Hartmann (2003) address
the issue of variety of evidence in support of a given hypoth-
esis. This is different from determining whether two sources
are independent. Fitelson (2001a) provides a Bayesian ac-
count for measuring independence across various sources.
However, Fitelson does not consider reliability or coherence.
Work on reliability has mostly been in the context of infor-
mation fusion. Noble (2004) provides an overview of the lit-
erature on the reliability of open source information. How-
ever, he does not formally address independence or coher-
ence.

Biases Introduced Through Manipulation
Real-world data comes at various levels of manipulation
from multiple modalities of sources. The five most com-
monly used levels are: 1) Raw (data is collected at the source
without any manipulation); 2) Calibrated (data is reduced
through the process of feature selection); 3) Interpreted (data
from the calibrated level is “interpreted” by a domain expert
where the feature selection is more semantically oriented);
4) Extracted (data from the interpreted level is put in context
with previously extracted data); 5) Exploited (data is con-
verted into an “action report,” where decisions are made).
As data gets manipulated from one level to the next, biases
get introduced. These biases must be accounted for. Evalu-
ating information in data permits one way to measure such
biases by highlighting the difference between values of in-
formation from different levels.

Preliminary Experiments
We ran some preliminary tests on a simplified model of
macroeconomics to illustrate the feasibility of our ideas.
The task we examined was characterizing the economy
based on a number of indicators. We selected the indica-
tors based loosely on a model proposed by Sondhauss and
Weihs (1999). They are: 1) yearly growth rate of real GNP;
2) yearly growth rate of real private consumption; 3) gov-
ernment deficit as percent of GNP; 4) yearly growth rate of
wage and salary earners; 5) net exports as percent of GNP;
6) yearly growth rate of M1 money supply; 7) yearly growth
rate of real investment in equipment; 8) yearly growth rate of
real investment in construction; 9) yearly growth rate of unit

4Contextual fit measures the coherence of a piece of informa-
tion with a given belief set.

labor cost; 10) yearly growth rate of GNP price deflater; 11)
rate of nominal short term interest rate; 12) real long term in-
terest rate; The hypothesis we tested was: “The economy is
currently growing.” Data giving values for these indicators
was collected quarterly from the first quarter of 1947 to the
first quarter of 2006 and in each quarter it was noted whether
or not there was economic growth. There were a number
of missing values from some of the indicators. There are
many challenges to using a data set such as this one. Par-
ticularly, the state of the world (economic growth or reces-
sion) changes over time. Further, the data’s predictive power
changes in response to the state of the world changing (e.g.
leading vs. lagging indicators). In addition, because the data
comes from a number of different government agencies as
well as independent research firms, there can often be con-
flicts and/or inconsistencies. Further, there is a data sparsity
issue as well. This is exactly the type of scenario where we
expect to see the most benefit from using a VOI approach.

For this preliminary feasibility study we explored four
concrete measures of VOI and compared the results. At
each time step, we used VOI to select the strongest evidence
from a fixed given number of sources and used it as the basis
for inference and learning. We assumed the highest valued
sources were producing the strongest evidence. In particular,
we tested using mutual information between the source and
the class label (Shannon 1948), objective event coherence,
and objective process coherence as our estimates of VOI as
well as using random source selection. As this is a position
paper and we are only reporting on our preliminary feasibil-
ity study, we chose to omit independence and reliability.

The first 10 years of data were used to estimate the joint
distribution P (H,E) where E represents all possible val-
ues of each of the indicators. Then, at each time step, the
next quarter was presented as a new instance. If the learned
distribution was able to supply a probability estimate (e.g.
P (H|e) + P (H̄|e) = 1.0 where e is the instantiation of ev-
idence from the current time step)5, then it was output and
later compared to ground truth to quantify error. Otherwise,
the distribution was updated accordingly and we moved on
to the next time step. We were interested in examining both
the error rate and the number of estimates of P (H|E) that
were output during this process.

To illustrate one of the key challenges to a push problem,
in Figure 4 we present the results of using objective source
coherence as the criterion to select i sources for i = 1, . . . , 4
sources. The important thing to notice in this plot is that
when only one or two sources are selected for inference,
there is a very smooth increase or decrease in belief that co-
incides nicely with the rising or falling of the economy. As
we select three and four sources, we introduce the possibility
of conflicting or noisy evidence and the smoothness of the
belief curve erodes and becomes more erratic. This degra-
dation illustrates the difficulty of a push problem where in-
ference can be handicapped by information overload or poor

5The learned distribution may be unable to estimate a proba-
bility if no similar combination of attribute values have been en-
countered. This is especially an issue in cases of relatively small
high-dimensional data sets such as the economic indicators set.
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Figure 4: Belief Over Time Using Source Coherence to Se-
lect 1, 2, 3, and 4 Sources
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Figure 5: Belief Over Time Using 2 Sources Selected Ran-
domly, Using Mutual Information, or Objective Event Co-
herence

quality information.
Representative results for this simplified macroeconomic

model appear in Figures 5 and 6. Looking at Figure 5 where
the hypothesis estimates over time are compared to ground
truth for using three of the selection methods to select from
two sources (the fourth appears in Figure 4, top right), we
see that random selection is very erratic. More interest-
ingly, we see that mutual information selection and event
coherence selection perform similarly in a qualitative sense.
These plots are a detailed representation of the summary
statistics presented in column 2 of Figures 6(a) & 6(b).

What we begin to see when we look deeper into the details
is that, with the exception of the four source selection case,
mutual information and event coherence result in compara-
ble error rates (Figure 6(a)). This is encouraging. However,
the full picture is not revealed until we look at the number
of estimates output (Figure 6(b)). In all cases, with the ex-
ception of selecting just one source, the number of estimates
made when using coherence selection is notably higher than
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Figure 6: Performance of Random, Mutual Information, and
Event Coherence Selection in Terms of Error Rate and Num-
ber of Estimates

the cases with mutual information based selection. We are
hopeful that with further research and the incorporation of
independence and reliability we can further decrease error
and increase the number of predictions.

In addition to these general trends, there were a few in-
teresting anomalies. The first has to deal with the relative
error rate in prediction between mutual information selec-
tion and event coherence selection. Specifically, when two
sources are selected, the error rate associated with objective
event coherence selection is relatively higher than with mu-
tual information whereas in all other cases it was the other
way around. We have no good explanation for this. Ad-
ditionally, in the four source selection case, the error rate
for mutual information is higher than for the two and three
source selection case (which further indicates the difficulty
of the push problem).

In general, the trend we identified in most cases was a
monotonic decrease in average error followed by a mono-
tonic increase in average error as the number of sources se-
lected increased. Figure 6(a) mostly shows the monotonic
decrease in error. The trend is not surprising since we would
expect that at first increasing the number of sources would
lead to less average error while adding too many sources
would eventually lead to increased average error (similar to
overfitting in learning). Unfortunately, as the number of
sources selected increased, the number of predictions out-
put decreased too rapidly to draw a meaningful conclusion.
While we do not present a formal explanation for our ob-
servation, the intuition seems to point to the nature of using
process measures for the selection criteria. That is, when us-
ing a process measure, it is likely that as time goes on there
will be one combination of sources that is consistently val-
ued highest. Unless a sliding window is used for the calcula-
tion of the process measures, any short term degradation in
the quality of information produced by those highly ranked
sources will not get discovered. In contrast, an event based
measure will be able to detect these degradations and suit-
ably adjust the source values.

In the future, it could prove interesting to see how the set
of selected sources evolves over time in response to these
changes in quality. For example, in the top-most plot of Fig-
ure 5, somewhere just before the 80th time step, the cer-
tainty of prediction becomes somewhat erratic. This is a
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phenomenon that was discovered in almost all trials using
objective event and process coherence as well as in some
of the mutual information trials. While we do not have any
research to support this, our intuition indicates there was a
change in the way the statistics were reported that probably
caused a change in the distribution of the classes with re-
spect to the evidence. In the data mining community, this
type of change is often referred to as concept drift.

Conclusion and Future Work
In this paper, we have argued for the importance of con-
sidering a qualitative value of information content for ev-
idence detection. We outlined how to value information
based on three time-dependent components: reliability of a
data source, independence between data sources, and coher-
ence among data sources. We also raised several issues with
respect to temporal tracking, learning a value function, and
biases in various levels of data. The bottom line is that eval-
uating information from real-world, dynamic data sources
will provide us with a much-needed qualitative metric for
both evidence detection and hypothesis testing.

We have also outlined a framework that allows the com-
putation of VOI for both processes and events. This dis-
tinction between processes and events appears to be both
novel and very powerful. The resulting potential increase
in ability to inform inference is a fertile area for future re-
search. Other work along these lines includes investigat-
ing appropriate learning methods for estimating each com-
ponent function individually as well as learning how to best
combine them. Additionally, comparing these learned com-
ponent functions to some of the existing functions we sur-
veyed will play an important role in characterizing perfor-
mance. We also plan to conduct an extensive experimental
study using additional data sets and begin looking at some
of the alternate models of uncertainty (such as possibility
theory or Dempster-Shafer theory).

Lastly, to fully enable triage, we have to look at how,
specifically, VOI is used to select among the many possible
combinations of sources. In our preliminary work, we as-
sumed a fixed number of sources to be selected for inference.
Ultimately, rather than selecting the strongest evidence pro-
duced by n sources, we would like this to be adapted at each
time step to select the strongest evidence possible. Even
with the limited experimentation described in this position
paper, we see very encouraging results. We are excited to
experiment with the full potential for this approach and pur-
sue the many avenues of future research.
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